If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2-32p+35=0
a = 5; b = -32; c = +35;
Δ = b2-4ac
Δ = -322-4·5·35
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-18}{2*5}=\frac{14}{10} =1+2/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+18}{2*5}=\frac{50}{10} =5 $
| 2(6-x)=3(2x+13 | | z/5-5=23.4 | | 2(6-x)=3(2+13 | | n/3=-10 | | 67=4x-13 | | 4x^2-5x-6=2x^2+3x-12 | | 4+7n=8n-4 | | 7x-(5x-2)=38 | | 2k-1=k-5=3k | | 9x-5=3(x-2)+4x | | (1-9y)÷(11-3y)=(5/8) | | m+9/3=9 | | 5x=-17x+7 | | n/6(8-2n)=2n+6 | | x+5x-2x=12 | | 7x=32.5 | | 50=5(-2x+4) | | 10(x+1=2x-7 | | 5x-1=10-2(4-3x) | | 8x+11-3=2x+1 | | -2(4x+4)=-7x+2 | | R+2r-15=0 | | x2+5=630 | | 8=z/4-2 | | y^2+24y+144=-100 | | 8.5k-2=15 | | R2+2r-15=0 | | 2=t+13-t | | x-42.3=28.8. | | 25=6x+56 | | 5(x+9)=19 | | 5x-2x=3x-7x+25 |